Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1255003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908356

RESUMEN

Introduction: Severe forms of COVID-19, the disease caused by SARS-CoV-2, are characterized by acute respiratory distress syndrome, robust lung inflammation and death in some patients. Strong evidence has been accumulating that polymorphonuclear neutrophilic granulocytes (PMN) play an important role in the pathophysiology of severe COVID-19. SARS-CoV-2 directly induces in vitro PMN activation, mainly the release of neutrophil extracellular traps (NETs). However, the viral components inducing this PMN response remain unclear. Methods: In this work human PMN responses were assessed in vitro in response to the spike (S) protein of two different SARS-CoV-2 variants, anti-S IgG1 antibodies or immune complexes formed by them. Production of reactive oxygen species (ROS) was measured by Diogenes-based chemiluminescence. Release of myeloperoxidase (MPO) was assessed by ELISA while secretion of a list of cytokines and growth factors was determined by high-performance multiplex cytokine assay. Results and discussion: We show that the SARS-CoV-2 Omicron variant S protein and anti-spike IgG1, either alone or together, stimulate ROS production in human PMNs. We also observed that the SARS-CoV-2 Wuhan S protein and anti-S IgG1 antibody together trigger MPO release from PMNs. Based on the relevance of SARS-CoV-2 and influenza co-infections, we have also investigated the impact of influenza virus infection on the previous PMN responses to S proteins or anti-S antibodies. We did not detect any significant effect of influenza co-infection on ROS generation in PMNs. Our data also show that PMN stimulation by S proteins induced the release of different chemokines, growth factors, regulatory and proinflammatory cytokines. Overall, our findings show that the SARS-CoV-2 S protein, an anti-spike IgG1 antibody or their immune complex, promote oxidative responses of PMNs in a variant-dependent manner, contributing to a better understanding of the role of PMN responses during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Glicoproteína de la Espiga del Coronavirus , Neutrófilos , SARS-CoV-2 , COVID-19/metabolismo , Citocinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Gripe Humana/metabolismo , Estrés Oxidativo , Inmunoglobulina G
2.
Malar J ; 22(1): 142, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127669

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) is the most effective treatment for malaria, and has significantly reduced morbimortality. Polymorphisms associated with the Plasmodium falciparum Kelch gene (Pfkelch13) have been associated with delayed parasite clearance even with ACT treatment. METHODS: The Pfkelch13 gene was sequenced from P. falciparum infected patients (n = 159) with uncomplicated malaria in Niger. An adequate clinical and parasitological response (ACPR) was reported in 155 patients. Four (n = 4) patients had treatment failure (TF) that were not reinfections-two of which had late parasitological failures (LPF) and two had late clinical failures (LCF). RESULTS: Thirteen single nucleotide polymorphisms (SNPs) were identified of which seven were non-synonymous (C469R, T508S, R515T, A578S, I465V, I437V, F506L,), and three were synonymous (P443P, P715P, L514L). Three SNP (C469R, F506L, P715P) were present before ACT treatment, while seven mutations (C469R, T508S, R515T, L514L, P443P, I437V, I465V) were selected by artemether/lumefantrine (AL)-five of which were non-synonymous (C469R, T508S, R515T, I437V, I465V). Artesunate/amodiaquine (ASAQ) has selected any mutation. One sample presented three cumulatively non-synonymous SNPs-C469R, T508S, R515T. CONCLUSIONS: This study demonstrates intra-host selection of Pfkelch13 gene by AL. The study highlights the importance of LCF and LPF parasites in the selection of resistance to ACT. Further studies using gene editing are required to confirm the potential implication of resistance to ACT with the most common R515T and T508S mutations. It would also be important to elucidate the role of cumulative mutations.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Niger , Combinación de Medicamentos , Arteméter/uso terapéutico , Amodiaquina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Insuficiencia del Tratamiento , Polimorfismo de Nucleótido Simple
3.
Front Immunol ; 14: 1044703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936954

RESUMEN

Introduction: Mycobacterium tuberculosis (Mtb) is the primary cause of human tuberculosis (TB) and is currently the second most common cause of death due to a singleinfectious agent. The first line of defense against airborne pathogens, including Mtb, is the respiratory epithelium. One of the innate defenses used by respiratory epithelial cells to prevent microbial infection is an oxidative antimicrobial system consisting of the proteins, lactoperoxidase (LPO) and Dual oxidase 1 (Duox1), the thiocyanate anion (SCN-) and hydrogen peroxide (H2O2), which together lead to the generation of antimicrobial hypothiocyanite (OSCN-) in the airway lumen. OSCN- kills bacteria and viruses in vitro, but the role of this Duox1-based system in bacterial infections in vivo remains largely unknown. The goal of this study was to assess whether Duox1 contributes to the immune response against the unique respiratory pathogen, Mtb. Methods: Duox1-deficient (Duox1 KO) and wild-type (WT) mice were infected with Mtb aerosols and bacterial titers, lung pathology, cytokines and immune cell recruitment were assessed. Results and discussion: Mtb titers in the lung, spleen and liver were not different 30 days after infection between WT and Duox1 KO mice. Duox1 did not affect lung histology assessed at days 0, 30, and 90 post-Mtb infection. Mtb-infected Duox1 KO animals exhibited enhanced production of certain cytokines and chemokines in the airway; however, this response was not associated with significantly higher numbers of macrophages or neutrophils in the lung. B cell numbers were lower, while apoptosis was higher in the pulmonary lesions of Mtb-infected Duox1 KO mice compared to infected WT animals. Taken together, these data demonstrate that while Duox1 might influence leukocyte recruitment to inflammatory cell aggregates, Duox1 is dispensable for the overall clinical course of Mtb lung infection in a mouse model.


Asunto(s)
Oxidasas Duales , Tuberculosis , Animales , Humanos , Ratones , Citocinas/metabolismo , Oxidasas Duales/genética , Peróxido de Hidrógeno/metabolismo , Pulmón/patología , Tuberculosis/inmunología
5.
Trop Med Infect Dis ; 7(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36006247

RESUMEN

The effectiveness of artemisinin-based combination therapies (ACTs) depends not only on that of artemisinin but also on that of partner molecules. This study aims to evaluate the prevalence of mutations in the Pfdhfr, Pfdhps, and Pfmdr1 genes from isolates collected during a clinical study. Plasmodium genomic DNA samples extracted from symptomatic malaria patients from Dogondoutchi, Niger, were sequenced by the Sanger method to determine mutations in the Pfdhfr (codons 51, 59, 108, and 164), Pfdhps (codons 436, 437, 540, 581, and 613), and Pfmdr1 (codons 86, 184, 1034, and 1246) genes. One hundred fifty-five (155) pre-treatment samples were sequenced for the Pfdhfr, Pfdhps, and Pfmdr1 genes. A high prevalence of mutations in the Pfdhfr gene was observed at the level of the N51I (84.97%), C59R (92.62%), and S108N (97.39%) codons. The key K540E mutation in the Pfdhps gene was not observed. Only one isolate was found to harbor a mutation at codon I431V. The most common mutation on the Pfmdr1 gene was Y184F in 71.43% of the mutations found, followed by N86Y in 10.20%. The triple-mutant haplotype N51I/C59R/S108N (IRN) was detected in 97% of the samples. Single-mutant (ICS and NCN) and double-mutant (IRS, NRN, and ICN) haplotypes were prevalent at 97% and 95%, respectively. Double-mutant haplotypes of the Pfdhps (581 and 613) and Pfmdr (86 and 184) were found in 3% and 25.45% of the isolates studied, respectively. The study focused on the molecular analysis of the sequencing of the Pfdhfr, Pfdhps, and Pfmdr1 genes. Although a high prevalence of mutations in the Pfdhfr gene have been observed, there is a lack of sulfadoxine pyrimethamine resistance. There is a high prevalence of mutation in the Pfmdr184 codon associated with resistance to amodiaquine. These data will be used by Niger's National Malaria Control Program to better monitor the resistance of Plasmodium to partner molecules in artemisinin-based combination therapies.

6.
Front Immunol ; 13: 859033, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663985

RESUMEN

The influenza virus has a large clinical burden and is associated with significant mortality and morbidity. The development of effective drugs for the treatment or prevention of influenza is important in order to reduce its impact. Adamantanes and neuraminidase inhibitors are two classes of anti-influenza drugs in which resistance has developed; thus, there is an urgent need to explore new therapeutic options. Boosting antiviral innate immune mechanisms in the airways represents an attractive approach. Hypothiocyanite (OSCN-) is produced by the airway epithelium and is effective in reducing the replication of several influenza A virus strains in vitro. It remains, however, largely unexplored whether OSCN- has such an antiviral effect in vivo. Here we determined the therapeutic potential of OSCN-, alone or in combination with amantadine (AMT), in preventing lethal influenza A virus replication in mice and in vitro. Mice intranasally infected with a lethal dose of A/Puerto Rico/8/1934 (H1N1) or A/Hong Kong/8/1968 (H3N2) were cured by the combination treatment of OSCN- and AMT. Monotherapy with OSCN- or AMT alone did not substantially improve survival outcomes. However, AMT+OSCN- treatment significantly inhibited viral replication, and in vitro treatment inhibited viral entry and nuclear transport of different influenza A virus strains (H1N1 and H3N2) including the AMT-resistant strain A/WSN/33 (H1N1). A triple combination treatment consisting of AMT, oseltamivir, and OSCN- was also tested and further inhibited in vitro viral replication of the AMT-resistant A/WSN/33 strain. These results suggest that OSCN- is a promising anti-influenza treatment option when combined with other antiviral drugs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Amantadina/farmacología , Amantadina/uso terapéutico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/tratamiento farmacológico , Ratones , Tiocianatos
7.
Autoimmunity ; 55(2): 109-117, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199621

RESUMEN

Cystic fibrosis (CF) lung disease begins early in childhood and is characterized by neutrophilic inflammation of the airways. Neutrophil extracellular traps (NETs) represent one mechanism by which neutrophils contribute to lung damage. The enzyme peptidylarginine deiminase 4 (PAD4) is required for NET formation. Our overall concept is that NET formation delivers PAD4 outside the neutrophil resulting in autoantibody generation, and this autoimmunity may be a novel mechanism contributing to CF lung disease progression. The aim of this study was to investigate clinical predictors of serum anti-PAD4 autoantibody (PAD4 Ab) levels in CF subjects with a wide range of ages from early childhood through middle age. We measured PAD4 Ab levels in sera from 104 CF subjects. PAD4 Abs were detectable among CF children as young as one year of age and elevated compared to paediatric healthy controls. PAD4 Ab levels increased significantly with age (r = 0.584, p <.001) and correlated with lower lung function (r = -0.481, n = 99, p <.001). PAD4 Abs were elevated in subjects with chronic Pseudomonas aeruginosa airways infection (p <.001), but not with other key clinical CF co-variates including sex, CFTR genotype, sweat chloride, pancreatic enzyme use, nutritional status, recent pulmonary exacerbations, Staphylococcus aureus, or CF-related diabetes. PAD4 Ab levels were also correlated with serum anti-double-stranded DNA IgA autoantibodies, which have similarly been shown to be elevated in CF subjects and associated with lung damage. In multivariable analysis, age and lung function remained correlated with PAD4 Ab levels. In summary, we describe novel findings of anti-PAD4 autoantibodies in CF that are present early in childhood, increase over time with age, and correlate with lung disease severity. Autoimmunity to antigens extruded by NETs appears to be an early event in CF lung disease, and airway autoimmunity related to NET formation is a potential mechanism of lung disease progression in CF.HighlightsSerum anti-PAD4 autoantibodies are detected in paediatric CF serum and are elevated compared to healthy paediatric controlsAnti-PAD4 autoantibodies increase with ageAnti-PAD4 autoantibodies correlate with lower lung function, Pseudomonas aeruginosa airway infection and anti-dsDNA IgA autoantibodies, but not with other key clinical CF co-variatesAge and lung function remain correlated with anti-PAD4 autoantibodies in multivariable analysis.


Asunto(s)
Fibrosis Quística , Trampas Extracelulares , Autoanticuerpos , Niño , Preescolar , Fibrosis Quística/genética , Humanos , Pulmón , Persona de Mediana Edad , Neutrófilos , Índice de Severidad de la Enfermedad
8.
PLoS One ; 17(1): e0262832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35051238

RESUMEN

Tumor progression locus 2 (Tpl2) is a serine/threonine kinase that regulates the expression of inflammatory mediators in response to Toll-like receptors (TLR) and cytokine receptors. Global ablation of Tpl2 leads to severe disease in response to influenza A virus (IAV) infection, characterized by respiratory distress, and studies in bone marrow chimeric mice implicated Tpl2 in non-hematopoietic cells. Lung epithelial cells are primary targets and replicative niches of influenza viruses; however, the specific regulation of antiviral responses by Tpl2 within lung epithelial cells has not been investigated. Herein, we show that Tpl2 is basally expressed in primary airway epithelial cells and that its expression increases in both type I and type II airway epithelial cells (AECI and AECII) in response to influenza infection. We used Nkx2.1-cre to drive Tpl2 deletion within pulmonary epithelial cells to delineate epithelial cell-specific functions of Tpl2 during influenza infection in mice. Although modest increases in morbidity and mortality were attributed to cre-dependent deletion in lung epithelial cells, no alterations in host cytokine production or lung pathology were observed. In vitro, Tpl2 inhibition within the type I airway epithelial cell line, LET1, as well as genetic ablation in primary airway epithelial cells did not alter cytokine production. Overall, these findings establish that Tpl2-dependent defects in cells other than AECs are primarily responsible for the morbidity and mortality seen in influenza-infected mice with global Tpl2 ablation.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Interacciones Microbiota-Huesped/genética , Virus de la Influenza A , Quinasas Quinasa Quinasa PAM/metabolismo , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perros , Femenino , Quinasas Quinasa Quinasa PAM/genética , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Proteínas Proto-Oncogénicas/genética
9.
Front Immunol ; 12: 772288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912341

RESUMEN

Seasonal influenza epidemics represent a significant global health threat. The exacerbated immune response triggered by respiratory influenza virus infection causes severe pulmonary damage and contributes to substantial morbidity and mortality. Regulator of G-protein signaling 10 (RGS10) belongs to the RGS protein family that act as GTPase activating proteins for heterotrimeric G proteins to terminate signaling pathways downstream of G protein-coupled receptors. While RGS10 is highly expressed in immune cells, in particular monocytes and macrophages, where it has strong anti-inflammatory effects, its physiological role in the respiratory immune system has not been explored yet. Here, we show that Rgs10 negatively modulates lung immune and inflammatory responses associated with severe influenza H1N1 virus respiratory infection in a mouse model. In response to influenza A virus challenge, mice lacking RGS10 experience enhanced weight loss and lung viral titers, higher mortality and significantly faster disease onset. Deficiency of Rgs10 upregulates the levels of several proinflammatory cytokines and chemokines and increases myeloid leukocyte accumulation in the infected lung, markedly neutrophils, monocytes, and inflammatory monocytes, which is associated with more pronounced lung damage. Consistent with this, influenza-infected Rgs10-deficent lungs contain more neutrophil extracellular traps and exhibit higher neutrophil elastase activities than wild-type lungs. Overall, these findings propose a novel, in vivo role for RGS10 in the respiratory immune system controlling myeloid leukocyte infiltration, viral clearance and associated clinical symptoms following lethal influenza challenge. RGS10 also holds promise as a new, potential therapeutic target for respiratory infections.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae/inmunología , Neumonía/inmunología , Proteínas RGS/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Femenino , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Neumonía/patología , Neumonía/virología , Proteínas RGS/genética
10.
Front Immunol ; 12: 682668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737733

RESUMEN

Introduction: Placental malaria (PM) is characterized by accumulation of inflammatory leukocytes in the placenta, leading to poor pregnancy outcomes. Understanding of the underlying mechanisms remains incomplete. Neutrophils respond to malaria parasites by phagocytosis, generation of oxidants, and externalization of Neutrophil Extracellular Traps (NETs). NETs drive inflammation in malaria but evidence of NETosis in PM has not been reported. Neutrophil activity in the placenta has not been directly investigated in the context of PM and PM/HIV-co-infection. Methods: Using peripheral and placental plasma samples and placental tissue collected from Kenyan women at risk for malaria and HIV infections, we assessed granulocyte levels across all gravidities and markers of neutrophil activation, including NET formation, in primi- and secundigravid women, by ELISA, western blot, immunohistochemistry and immunofluorescence. Results: Reduced peripheral blood granulocyte numbers are observed with PM and PM/HIV co-infection in association with increasing parasite density and placental leukocyte hemozoin accumulation. In contrast, placental granulocyte levels are unchanged across infection groups, resulting in enhanced placental: peripheral count ratios with PM. Within individuals, PM- women have reduced granulocyte counts in placental relative to peripheral blood; in contrast, PM stabilizes these relative counts, with HIV coinfection tending to elevate placental counts relative to the periphery. In placental blood, indicators of neutrophil activation, myeloperoxidase (MPO) and proteinase 3 (PRTN3), are significantly elevated with PM and, more profoundly, with PM/HIV co-infection, in association with placental parasite density and hemozoin-bearing leukocyte accumulation. Another neutrophil marker, matrix metalloproteinase (MMP9), together with MPO and PRTN3, is elevated with self-reported fever. None of these factors, including the neutrophil chemoattractant, CXCL8, differs in relation to infant birth weight or gestational age. CXCL8 and MPO levels in the peripheral blood do not differ with infection status nor associate with birth outcomes. Indicators of NETosis in the placental plasma do not vary with infection, and while structures consistent with NETs are observed in placental tissue, the results do not support an association with PM. Conclusions: Granulocyte levels are differentially regulated in the peripheral and placental blood in the presence and absence of PM. PM, both with and without pre-existing HIV infection, enhances neutrophil activation in the placenta. The impact of local neutrophil activation on placental function and maternal and fetal health remains unclear. Additional investigations exploring how neutrophil activation and NETosis participate in the pathogenesis of malaria in pregnant women are needed.


Asunto(s)
Coinfección , Infecciones por VIH , VIH-1/metabolismo , Malaria , Activación Neutrófila , Neutrófilos/enzimología , Peroxidasa/metabolismo , Placenta , Plasmodium/metabolismo , Adulto , Biomarcadores/metabolismo , Coinfección/enzimología , Coinfección/parasitología , Coinfección/patología , Coinfección/virología , Femenino , Infecciones por VIH/enzimología , Infecciones por VIH/parasitología , Infecciones por VIH/patología , Humanos , Malaria/enzimología , Malaria/patología , Malaria/virología , Placenta/metabolismo , Placenta/parasitología , Placenta/virología , Embarazo
11.
Front Immunol ; 12: 745326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621276

RESUMEN

Cystic Fibrosis (CF) is a genetic disease that causes chronic and severe lung inflammation and infection associated with high rates of mortality. In CF, disrupted ion exchange in the epithelium results in excessive mucus production and reduced mucociliary clearance, leading to immune system exacerbation and chronic infections with pathogens such as P. aeruginosa and S. aureus. Constant immune stimulation leads to altered immune responses including T cell impairment and neutrophil dysfunction. Specifically, CF is considered a Th17-mediated disease, and it has been proposed that both P. aeruginosa and a subset of neutrophils known as granulocytic myeloid suppressor cells (gMDSCs) play a role in T cell suppression. The exact mechanisms behind these interactions are yet to be determined, but recent works demonstrate a role for arginase-1. It is also believed that P. aeruginosa drives gMDSC function as a means of immune evasion, leading to chronic infection. Herein, we review the current literature regarding immune suppression in CF by gMDSCs with an emphasis on T cell impairment and the role of P. aeruginosa in this dynamic interaction.


Asunto(s)
Fibrosis Quística/inmunología , Granulocitos/inmunología , Evasión Inmune , Células Supresoras de Origen Mieloide/inmunología , Pseudomonas aeruginosa/inmunología , Células Th17/inmunología , Arginasa/fisiología , Fibrosis Quística/complicaciones , Citotoxicidad Inmunológica , Humanos , Neutrófilos/inmunología , Neutrófilos/patología , Infección Persistente , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/inmunología , Linfocitos T Reguladores/inmunología
12.
Cell Signal ; 86: 110099, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339853

RESUMEN

Regulator of G-protein signaling 10 (RGS10) is a member of the superfamily of RGS proteins that canonically act as GTPase activating proteins (GAPs). RGS proteins accelerate GTP hydrolysis on the G-protein α subunits and result in termination of signaling pathways downstream of G protein-coupled receptors. Beyond its GAP function, RGS10 has emerged as an anti-inflammatory protein by inhibiting LPS-mediated NF-κB activation and expression of inflammatory cytokines, in particular TNF-α. Although RGS10 is abundantly expressed in resting macrophages, previous studies have shown that RGS10 expression is suppressed in macrophages following Toll-like receptor 4 (TLR4) activation by LPS. However, the molecular mechanism by which LPS induces Rgs10 silencing has not been clearly defined. The goal of the current study was to determine whether LPS silences Rgs10 expression through an NF-κB-mediated proinflammatory mechanism in pulmonary macrophages, a unique type of innate immune cells. We demonstrate that Rgs10 transcript and RGS10 protein levels are suppressed upon LPS treatment in the murine MH-S alveolar macrophage cell line. We show that pharmacological inhibition of PI3K/ NF-κB/p300 (NF-κB co-activator)/TNF-α signaling cascade and the activities of HDAC (1-3) enzymes block LPS-induced silencing of Rgs10 in MH-S cells as well as microglial BV2 cells and BMDMs. Further, loss of RGS10 generated by using CRISPR/Cas9 amplifies NF-κB phosphorylation and inflammatory gene expression following LPS treatment in MH-S cells. Together, our findings strongly provide critical insight into the molecular mechanism underlying RGS10 suppression by LPS in pulmonary macrophages.


Asunto(s)
FN-kappa B , Proteínas RGS , Animales , Citocinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , Ratones , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Emerg Infect Dis ; 27(8): 2107-2116, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34286682

RESUMEN

Conventional pertussis animal models deliver hundreds of thousands of Bordetella pertussis bacteria deep into the lungs, rapidly inducing severe pneumonic pathology and a robust immune response. However, human infections usually begin with colonization and growth in the upper respiratory tract. We inoculated only the nasopharynx of mice to explore the course of infection in a more natural exposure model. Nasopharyngeal colonization resulted in robust growth in the upper respiratory tract but elicited little immune response, enabling prolonged and persistent infection. Immunization with human acellular pertussis vaccine, which prevents severe lung infections in the conventional pneumonic infection model, had little effect on nasopharyngeal colonization. Our infection model revealed that B. pertussis can efficiently colonize the mouse nasopharynx, grow and spread within and between respiratory organs, evade robust host immunity, and persist for months. This experimental approach can measure aspects of the infection processes not observed in the conventional pneumonic infection model.


Asunto(s)
Infecciones por Bordetella , Tos Ferina , Animales , Bordetella pertussis , Evasión Inmune , Ratones , Nasofaringe , Vacuna contra la Tos Ferina , Tos Ferina/prevención & control
14.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34168077

RESUMEN

Dual oxidase 1 (DUOX1) is an NADPH oxidase that is highly expre-ssed in respiratory epithelial cells and produces H2O2 in the airway lumen. While a line of prior in vitro observations suggested that DUOX1 works in partnership with an airway peroxidase, lactoperoxidase (LPO), to produce antimicrobial hypothiocyanite (OSCN-) in the airways, the in vivo role of DUOX1 in mammalian organisms has remained unproven to date. Here, we show that Duox1 promotes antiviral innate immunity in vivo. Upon influenza airway challenge, Duox1-/- mice have enhanced mortality, morbidity, and impaired lung viral clearance. Duox1 increases the airway levels of several cytokines (IL-1ß, IL-2, CCL1, CCL3, CCL11, CCL19, CCL20, CCL27, CXCL5, and CXCL11), contributes to innate immune cell recruitment, and affects epithelial apoptosis in the airways. In primary human tracheobronchial epithelial cells, OSCN- is generated by LPO using DUOX1-derived H2O2 and inactivates several influenza strains in vitro. We also show that OSCN- diminishes influenza replication and viral RNA synthesis in infected host cells that is inhibited by the H2O2 scavenger catalase. Binding of the influenza virus to host cells and viral entry are both reduced by OSCN- in an H2O2-dependent manner in vitro. OSCN- does not affect the neuraminidase activity or morphology of the influenza virus. Overall, this antiviral function of Duox1 identifies an in vivo role of this gene, defines the steps in the infection cycle targeted by OSCN-, and proposes that boosting this mechanism in vivo can have therapeutic potential in treating viral infections.


Asunto(s)
Antivirales/inmunología , Oxidasas Duales/metabolismo , Inmunidad Innata , Animales , Apoptosis , Bronquios/patología , Bronquios/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/patología , Humanos , Peróxido de Hidrógeno/metabolismo , Gripe Humana/inmunología , Gripe Humana/patología , Gripe Humana/virología , Lactoperoxidasa/metabolismo , Ratones , Neuraminidasa/química , Neuraminidasa/metabolismo , Orthomyxoviridae/fisiología , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteolisis , ARN Viral/metabolismo , Tiocianatos , Proteínas Virales/química , Proteínas Virales/metabolismo , Inactivación de Virus , Internalización del Virus , Replicación Viral
15.
J Mol Med (Berl) ; 99(6): 743-754, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704512

RESUMEN

Dual oxidase 1 (DUOX1) is a member of the protein family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. DUOX1 has several normal physiological, immunological, and biochemical functions in different parts of the body. Dysregulated oxidative metabolism interferes with various disease pathologies and numerous therapeutic options are based on targeting cellular redox pathways. DUOX1 forms an important enzymatic source of biological oxidants, and DUOX1 expression is frequently dysregulated in various diseases. While this review shortly addresses the biochemical and cellular properties and proposed physiological roles of DUOX1, its main purpose is to summarize the current knowledge with respect to the potential role of DUOX1 enzyme in disease pathology, especially in mammalian organisms. Although DUOX1 is normally prominently expressed in epithelial lineages, it is frequently silenced in epithelial-derived cancers by epigenetic mechanisms. While an abundance of information is available on DUOX1 transcription in different diseases, an increasing number of mechanistic studies indicate a causative relationship between DUOX1 function and disease pathophysiology. Additionally, specific functions of the DUOX1 maturation factor, DUOXA1, will also be addressed. Lastly, urgent and outstanding questions on the field of DUOX1 will be discussed that could provide valuable new diagnostic tools and novel therapeutic options.


Asunto(s)
Susceptibilidad a Enfermedades , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Regulación Enzimológica de la Expresión Génica , Oxidación-Reducción , Animales , Oxidasas Duales/química , Activación Enzimática , Humanos , Isoenzimas , NADPH Oxidasas/metabolismo , Especificidad de Órganos/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Relación Estructura-Actividad
16.
BMC Immunol ; 22(1): 7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478382

RESUMEN

BACKGROUND: Neutrophils are key components of the exacerbated inflammation and tissue damage in cystic fibrosis (CF) airways. Neutrophil extracellular traps (NETs) trap and kill extracellular pathogens. While NETs are abundant in the airways of CF patients and have been hypothesized to contribute to lung damage in CF, the in vivo role of NETs remains controversial, partially due to lack of appropriate animal models. The goal of this study was to detect NETs and to further characterize neutrophil-mediated inflammation in the airways of mice overexpressing the epithelial sodium channel (ßENaC-Tg mice on C57BL/6 background) in their lung with CF-like airway disease, in the absence of any apparent bacterial infections. METHODS: Histology scoring of lung tissues, flow cytometry, multiplex ELISA, immunohistochemistry and immunofluorescence were used to characterize NETs and the airway environment in uninfected, ßENaC-Tg mice at 6 and 8 weeks of age, the most chronic time points so far studied in this model. RESULTS: Excessive neutrophilic infiltration characterized the lungs of uninfected, ßENaC-Tg mice at 6 and 8 weeks of age. The bronchoalveolar lavage fluid (BALF) of ßENaC-Tg mice contains increased levels of CF-associated cytokines and chemokines: KC, MIP-1α/ß, MCP-1, G-CSF, IL-5, and IL-6. The BALF of ßENaC-Tg mice contain MPO-DNA complexes, indicative of the presence of NETs. Immunofluorescence and flow cytometry of BALF neutrophils and lung tissues demonstrated increased histone citrullination, a NET-specific marker, in ßENaC-Tg mice. CONCLUSIONS: NETs are detected in the airways of ßENaC-Tg mice, in the absence of bacterial infections. These data demonstrate the usefulness of the ßENaC-Tg mouse to serve as a model for studying the role of NETs in chronic CF airway inflammation.


Asunto(s)
Fibrosis Quística/inmunología , Canales Epiteliales de Sodio/inmunología , Trampas Extracelulares/inmunología , Pulmón/inmunología , Neutrófilos/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Citrulinación , Fibrosis Quística/genética , Fibrosis Quística/patología , Citocinas/metabolismo , Canales Epiteliales de Sodio/genética , Histonas/metabolismo , Inflamación , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infiltración Neutrófila
17.
PLoS One ; 13(7): e0199167, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044776

RESUMEN

Lactoperoxidase (LPO) is an enzyme found in several exocrine secretions including the airway surface liquid producing antimicrobial substances from mainly halide and pseudohalide substrates. Although the innate immune function of LPO has been documented against several microbes, a detailed characterization of its mechanism of action against influenza viruses is still missing. Our aim was to study the antiviral effect and substrate specificity of LPO to inactivate influenza viruses using a cell-free experimental system. Inactivation of different influenza virus strains was measured in vitro system containing LPO, its substrates, thiocyanate (SCN-) or iodide (I-), and the hydrogen peroxide (H2O2)-producing system, glucose and glucose oxidase (GO). Physiologically relevant concentrations of the components of the LPO/H2O2/(SCN-/I-) antimicrobial system were exposed to twelve different strains of influenza A and B viruses in vitro and viral inactivation was assessed by determining plaque-forming units of non-inactivated viruses using Madin-Darby canine kidney cells (MDCK) cells. Our data show that LPO is capable of inactivating all influenza virus strains tested: H1N1, H1N2 and H3N2 influenza A viruses (IAV) and influenza B viruses (IBV) of both, Yamagata and Victoria lineages. The extent of viral inactivation, however, varied among the strains and was in part dependent on the LPO substrate. Inactivation of H1N1 and H1N2 viruses by LPO showed no substrate preference, whereas H3N2 influenza strains were inactivated significantly more efficiently when iodide, not thiocyanate, was the LPO substrate. Although LPO-mediated inactivation of the influenza B strains tested was strain-dependent, it showed slight preference towards thiocyanate as the substrate. The results presented here show that the LPO/H2O2/(SCN-/I-) cell-free, in vitro experimental system is a functional tool to study the specificity, efficiency and the molecular mechanism of action of influenza inactivation by LPO. These studies tested the hypothesis that influenza strains are all susceptible to the LPO-based antiviral system but exhibit differences in their substrate specificities. We propose that a LPO-based antiviral system is an important contributor to anti-influenza virus defense of the airways.


Asunto(s)
Antivirales/farmacología , Gripe Humana/tratamiento farmacológico , Lactoperoxidasa/química , Orthomyxoviridae/efectos de los fármacos , Animales , Antivirales/química , Sistema Libre de Células/efectos de los fármacos , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/patogenicidad , Gripe Humana/virología , Compuestos de Yodo/química , Compuestos de Yodo/metabolismo , Compuestos de Yodo/farmacología , Lactoperoxidasa/metabolismo , Células de Riñón Canino Madin Darby , Orthomyxoviridae/patogenicidad , Especificidad por Sustrato , Tiocianatos/química , Tiocianatos/metabolismo , Tiocianatos/farmacología
18.
J Microbiol ; 56(6): 373-386, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29858825

RESUMEN

The NOX/DUOX family of NADPH oxidases are transmembrane proteins generating reactive oxygen species as their primary enzymatic products. NADPH oxidase (NOX) 1-5 and Dual oxidase (DUOX) 1 and 2 are members of this family. These enzymes have several biological functions including immune defense, hormone biosynthesis, fertilization, cell proliferation and differentiation, extracellular matrix formation and vascular regulation. They are found in a variety of tissues such as the airways, salivary glands, colon, thyroid gland and lymphoid organs. The discovery of NADPH oxidases has drastically transformed our view of the biology of reactive oxygen species and oxidative stress. Roles of several isoforms including DUOX1 and DUOX2 in host innate immune defense have been implicated and are still being uncovered. DUOX enzymes highly expressed in the respiratory and salivary gland epithelium have been proposed as the major sources of hydrogen peroxide supporting mucosal oxidative antimicrobial defenses. In this review, we shortly present data on DUOX discovery, structure and function, and provide a detailed, up-to-date summary of discoveries regarding antibacterial, antiviral, antifungal, and antiparasitic functions of DUOX enzymes. We also present all the literature describing the immune functions of lactoperoxidase, an enzyme working in partnership with DUOX to produce antimicrobial substances.


Asunto(s)
Antiinfecciosos/farmacología , Oxidasas Duales/metabolismo , Oxidasas Duales/farmacología , Lactoperoxidasa/metabolismo , Lactoperoxidasa/farmacología , Animales , Antifúngicos/farmacología , Antiparasitarios/farmacología , Antivirales/farmacología , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Inmunidad Innata , Proteínas de la Membrana/metabolismo , NADPH Oxidasa 1/farmacología , NADPH Oxidasa 5/farmacología , NADPH Oxidasas/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/metabolismo , Glándulas Salivales/metabolismo , Tiocianatos , Glándula Tiroides/metabolismo
19.
Immunohorizons ; 1(4): 29-41, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28890952

RESUMEN

Placental malaria, characterized by sequestration of Plasmodium falciparum in the maternal placental blood space and associated inflammatory damage, contributes to poor birth outcomes and ~200,000 infant deaths annually. Specific mechanisms that contribute to placental damage and dysfunction during malaria are not completely understood. To investigate a potential role for oxidative stress, antioxidant genes and markers for oxidative damage were assessed by quantitative PCR and immunohistochemistry in Plasmodium chabaudi AS-infected pregnant mice. Widespread evidence of lipid peroxidation was observed and was associated with higher antioxidant gene expression in conceptuses of infected mice. To assess the extent to which this oxidative damage might contribute to poor birth outcomes and be amenable to therapeutic intervention, infected pregnant mice were treated with N-acetylcysteine, a free radical scavenger, or tempol, an intracellular superoxide dismutase mimetic. The results show that mice treated with N-acetylcysteine experienced malaria induced-pregnancy loss at the same rate as control animals and failed to mitigate placental oxidative damage. In contrast, tempol-treated mice exhibited subtle improvement in embryo survival at gestation day 12. Although lipid peroxidation was not consistently reduced in the placentas of these mice, it was inversely related to embryo viability. Moreover, reduced IFN-γ and CCL2 plasma levels in treated mice were associated with midgestational embryo viability. Thus, although oxidative stress is remarkable in placental malaria and its mitigation by antioxidant therapy may improve pregnancy outcomes, the underlying mechanistic basis and potential therapeutic strategies require additional investigation.

20.
J Trop Med ; 2012: 173437, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23125862
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...